KOMPARASI METODE KLASIFIKASI DATA MINING ALGORITMA C4.5 DAN NAÃVE BAYES UNTUK PEMILIHAN ALAT KONTRASEPSI PADA KANTOR DINAS BPKB KEDUNGREJA CILACAP
Keywords:
Data Mining, C4.5, Naïve Bayes, RapidMinerAbstract
The increasing number of residents requires the government to reducethe population explosion, one of which is the Family Planning(KB) program.In family planning programs, mistakes often occur in choosingcontraceptives. Contraceptive device are tools to prevent pregnancy, lack ofknowledge about contraceptives causes acceptors to use contraceptives thatare not in accordance with their body conditions or even do not usecontraception. With the comparison of the C4.5 and Naïve Bayes algorithms,it is hoped that it will make it easier for acceptors to choose contraceptives.The purpose of the comparison of classification algorithms C4.5 and NaïveBayes is to help acceptors choose contraceptives using family planningacceptor data at the BPKB Office, Kedungreja District, Cilacap and theaccuracy and kappa obtained from the classification results seen from thewife’s age, wife’s work status, types of family planning service, participationin family planning and health facilities. This research uses data miningclassification method C4.5 algorithm and Naïve Bayes then a comparison ofthe two methods is carried out. The processing of these two method in theaccuracy of the C4.5 algorithm of 86.06% and kappa 0.638, while theaccuracy of Naïve Bayes was 92.46% and kappa 0.880. So the Naïve Bayesalgorithm is a better method in classifying family planning acceptor data atthe BPKB Office, Kedungreja Cilacap District in 2021 compared to the C4.5algorithm method.References
Annisa, R. (2019). Analisa komparasi algoritma klasifikasi data mining untuk
prediksi penderita penyakit jantung. Jurnal Teknik Informatika Kaputama,
(1).
Fauzia, B. (2021). Komparasi algoritma data mining naïve bayes dan C4.5 untuk
klasifikasi penerimaan peserta didik baru di SMPN 35 semarang.
Semarang: Unaki.
Gorunescu, F. (2011). Data Mining : Concepts, Model and Techniques. Berlin,
Jerman: Springer.
Han, J. (2007). Data Mining Concept And Technique. Champaign: Multiscience
Press.
Han, J., & Kamber, M. (2012). Data Mining and Techniques Second Edition.
San Fransisco: Morgan Kaufmann Publishers.
Kurniabudi., Harris, A., & Mintaria, A. E. (2021). Komparasi information gain,
gain ratio, cfs-bestfirst dan cfs-pso search terhadap performa deteksi
anomali. Jurnal Media Informatika Budidarma, 5 (1), 332-343.
Kurniawan, I. Y. (2018). Perbandingan algoritma naïve bayes dan C4.5 dalam
klasifikasi data mining. Jurnal Teknologi Informasi dan Ilmu Komputer,
(4), 455-464.
Kusrini, & Luthfi, E. (2009). Algoritma Data Mining. Yogyakarta: Andi Offset.
Pertiwi, M. W., Adiwisastra, M. F., & Supriadi, D. (2019). Analisis komparasi
menggunakan 5 metode data mining dalam klasifikasi persentase wanita
sudah menikah di usia 15-49 yang memakai alat KB (Keluarga
berencana). Jurnal Khatulistiwa Informatika.
Rismia, E. R., Widiharih, T., & Santoso, R. (2021). Klasifikasi regresi logistik
multinominal dan fuzzy k-nearest neighbor (FK-NN) dalam pemilihan
metode kontrasepsi di kecamatan bulakamba, kabupaten brebes, jawa
tengah. Jurnal Gaussiani, 10 (4), 476-487.
Sartika, D., & Sensuse, D. I. (2017). Perbandingan algoritma klasifikasi naïve
bayes, nearest neigbhour dan decision tree pada studi kasus pengambilan
keputusan pemilihan pola pakaian. Jurnal Jatisi.
Septiani, W. D. (2017). Komparasi metode klasifikasi data mining algoritma C4.5
dan naïve bayes untuk prediksi penyakit hepatitis. Jurnal Pilar Nusa
Mandiri, 13(1).
Sodik, A. (2015). Dasar metodologi Penelitian. Yogyakarta: Literasi Media
Publishing.
Sugiyono. (2015). Metodologi Penelitian Kuantitatif, Kualitatif, dan R&Do Title.
Bandung: Alfabete.